$y = 6 + 3x - 3x^2$

Must Know Questions To Ace Quadratic Graphs & Equations

1. | Solve the following equations.

a)
$$1 - 2x = 15x^2$$

b)
$$(x-3)^2 = \frac{4}{9}$$

c)
$$4x^2 - 6(x+1) = 3x + 7$$

- 2. If $-3y^2 + 2x^2 5xy = 0$, find the possible values of $\frac{x}{y}$.
- 3. The curve $y = 6 + 3x 3x^2$ cuts the x -axis at A and B, and the y -axis at C.

b) Write down the equation of the line of symmetry.

5. The diagram shows the graph of $y = x^2 + ax + b$. Find

- a) The equation of the line of symmetry of the curve.
- b) The values of a and b.
- c) The coordinates of the min point of the curve.
- d) The range of values of x for which the gradient of the curve is positive.

Answer Key:

1. a)
$$(5x-1)(3x+1) = 0$$

 $x = \frac{1}{5}$ or $x = -\frac{1}{3}$

b)
$$x = 3\frac{2}{3}$$
 or $x = 2\frac{1}{3}$

c)
$$(4x-13)(x+1) = 0$$

 $x = 3\frac{1}{4}$ or $x = -1$

or

2. (2x + y)(x - 3y) = 0

$$4. \ \frac{x+3x+15}{1+3} = 19$$

$$4x = 61$$

$$x = 15.25 \text{ km/h}$$

5. a)
$$x = 5$$

$$a = -10, b = 21$$

c) Min point: (
$$5,-4$$
)

d) At
$$x = 5$$
, gradient of curve = 0.

b)
$$x = \frac{1}{2}$$

Gradient of curve is positive when x > 5.

c) Max Point =
$$(\frac{1}{2}, 6\frac{3}{4})$$

d)
$$k = -30$$