

Must Know Questions To Ace Number Patterns

- 1. Consider the sequence 27, 25, 23, 21,
 - a) Write down the next two terms of the sequence.
 - b) Write down an expression, in terms of n, for the n^{th} term.
 - c) Find T_{90.}
- 2. The first three terms of a sequence of numbers, T_1 , T_2 , T_3 , ... are given below.

$$T_1 = 2 + 1^2 = 3$$

 $T_2 = 4 + 2^2 = 8$
 $T_3 = 6 + 3^2 = 15$

- •
- a) Find T_4 and T_5 .
- b) Write down an expression, in terms of n, for T_n .
- c) Evaluate T₈₈.
- 3. Consider the following number pattern:

$$1^{3} = \left(\frac{2 \times 2}{2}\right)^{2}$$

$$3 + 2^{3} - \left(\frac{2 \times 3}{2}\right)^{2}$$

$$1^3 + 2^3 + 3^3 = (\frac{3 \times 4}{2})^2$$

- $+2^3+3^3=(\frac{3\times4}{2})^3$
- a) Write down the 4th line in the pattern.
- b) Write down the \mathbf{n}^{th} line, in terms of n, in the pattern.

4. The first few rows of a number pattern are shown in the table.

Row Number	Numbers					Sum of Numbers	
1	1						1
2	3	5					8
3	7	9	11				27
4	13	15	17	19			p
5							125

- a) Find the value of p in the 4th row.
- b) Write down all the numbers in the 5th row.
- c) Write down a formula in terms of n, for
 - i) the total number of numbers in the nth row.
 - ii) the sum of the numbers in the nth row.
- d) The sum of all the numbers in the k^{th} row is 1000. Find the value of
 - i) *I*
 - ii) the first number in kth row.

Answer Key:

b)
$$29 - 2n$$

c)
$$-151$$

2. a)
$$T_4 = 8 + 4^2 = 24$$

 $T_5 = 10 + 5^2 = 35$

b)
$$T_n = 2n + n^2$$

c) 7920

3. a)
$$1^3 + 2^3 + 3^3 + 4^3 = (\frac{4 \times 5}{2})^2$$

b)
$$1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

4. a)
$$p = 64$$

cii)
$$n^3$$

di)
$$k = 10$$

dii) Let the first number in the row k be x.

$$x + (x + 2) + (x + 4) + \dots +$$

$$(x + 18) = 1000$$

 $10x + 2 + 4$

$$10x + 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 = 1000$$

$$10x + 90 = 1000$$

$$10x = 1000 - 90$$

$$x = 91$$